

Linux QMI SDK

4110914

1.27

Apr 19, 2018

Application Developer's Guide

4110914 Rev 1.2 Apr 19, 201 2

Application Developer's Guide Abbreviations and definitions

Important Notice

Due to the nature of wireless communications, transmission and reception of data can never be
guaranteed. Data may be delayed, corrupted (i.e., have errors) or be totally lost. Although significant
delays or losses of data are rare when wireless devices such as the Sierra Wireless modem are used
in a normal manner with a well-constructed network, the Sierra Wireless modem should not be used
in situations where failure to transmit or receive data could result in damage of any kind to the user or
any other party, including but not limited to personal injury, death, or loss of property. Sierra Wireless
accepts no responsibility for damages of any kind resulting from delays or errors in data transmitted or
received using the Sierra Wireless modem, or for failure of the Sierra Wireless modem to transmit or
receive such data.

Safety and Hazards

Do not operate the Sierra Wireless modem in areas where cellular modems are not advised without
proper device certifications. These areas include environments where cellular radio can interfere such
as explosive atmospheres, medical equipment, or any other equipment which may be susceptible to
any form of radio interference. The Sierra Wireless modem can transmit signals that could interfere
with this equipment. Do not operate the Sierra Wireless modem in any aircraft, whether the aircraft is
on the ground or in flight. In aircraft, the Sierra Wireless modem MUST BE POWERED OFF. When
operating, the Sierra Wireless modem can transmit signals that could interfere with various onboard
systems.

Note: Some airlines may permit the use of cellular phones while the aircraft is on the ground and the door

is open. Sierra Wireless modems may be used at this time.

The driver or operator of any vehicle should not operate the Sierra Wireless modem while in control of
a vehicle. Doing so will detract from the driver or operator’s control and operation of that vehicle. In
some states and provinces, operating such communications devices while in control of a vehicle is an
offence.

Limitations of Liability

This manual is provided “as is”. Sierra Wireless makes no warranties of any kind, either expressed or
implied, including any implied warranties of merchantability, fitness for a particular purpose, or
noninfringement. The recipient of the manual shall endorse all risks arising from its use.

The information in this manual is subject to change without notice and does not represent a
commitment on the part of Sierra Wireless. SIERRA WIRELESS AND ITS AFFILIATES
SPECIFICALLY DISCLAIM LIABILITY FOR ANY AND ALL DIRECT, INDIRECT, SPECIAL,
GENERAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES INCLUDING,
BUT NOT LIMITED TO, LOSS OF PROFITS OR REVENUE OR ANTICIPATED PROFITS OR
REVENUE ARISING OUT OF THE USE OR INABILITY TO USE ANY SIERRA WIRELESS
PRODUCT, EVEN IF SIERRA WIRELESS AND/OR ITS AFFILIATES HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES OR THEY ARE FORESEEABLE OR FOR CLAIMS BY ANY
THIRD PARTY.

Notwithstanding the foregoing, in no event shall Sierra Wireless and/or its affiliates aggregate liability
arising under or in connection with the Sierra Wireless product, regardless of the number of events,
occurrences, or claims giving rise to liability, be in excess of the price paid by the purchaser for the
Sierra Wireless product.

Customer understands that Sierra Wireless is not providing cellular or GPS (including A-GPS)
services. These services are provided by a third party and should be purchased directly by the
Customer.

4110914 Rev 1.2 Apr 19, 201 3

Application Developer's Guide Abbreviations and definitions

SPECIFIC DISCLAIMERS OF LIABILITY: CUSTOMER RECOGNIZES AND ACKNOWLEDGES
SIERRA WIRELESS IS NOT RESPONSIBLE FOR AND SHALL NOT BE HELD LIABLE FOR ANY
DEFECT OR DEFICIENCY OF ANY KIND OF CELLULAR OR GPS (INCLUDING A-GPS)
SERVICES.

Patents

This product may contain technology developed by or for Sierra Wireless Inc.

This product includes technology licensed from QUALCOMM®.

This product is manufactured or sold by Sierra Wireless Inc. or its affiliates under one or more patents
licensed from InterDigital Group and MMP Portfolio Licensing.

Copyright

© 2014 Sierra Wireless. All rights reserved.

Trademarks

Sierra Wireless®, AirPrime®, AirLink®, AirVantage®, WISMO® and the Sierra Wireless and Open AT
logos are registered trademarks of Sierra Wireless, Inc. or one of its subsidiaries.

Watcher® is a registered trademark of NETGEAR, Inc., used under license.

Windows® and Windows Vista® are registered trademarks of Microsoft Corporation.

Macintosh® and Mac OS X® are registered trademarks of Apple Inc., registered in the U.S. and other
countries.

QUALCOMM® is a registered trademark of QUALCOMM Incorporated. Used under license.

Other trademarks are the property of their respective owners.

Contact Information

Sales Desk:

Phone: 1-604-232-1488

Hours: 8:00 AM to 5:00 PM Pacific Time

Contact: http://www.sierrawireless.com/sales

Post:

Sierra Wireless

13811 Wireless Way

Richmond, BC

Canada V6V 3A4

Technical Support: support@sierrawireless.com

RMA Support: repairs@sierrawireless.com

Fax: 1-604-231-1109

Web: http://www.sierrawireless.com/

Consult our website for up-to-date product descriptions, documentation, application notes, firmware
upgrades, troubleshooting tips, and press releases: www.sierrawireless.com

http://www.sierrawireless.com/sales
mailto:support@sierrawireless.com
mailto:repairs@sierrawireless.com
http://www.sierrawireless.com/
http://www.sierrawireless.com/

4110914 Rev 1.2 Apr 19, 201 4

Application Developer's Guide Abbreviations and definitions

Document History

Version Date Updates

1.0
September 09,
2011

Initial Release

1.01 October 05, 2011
Added section 5.4: Connection Manager Sample Application; Updated
sections 3.1, 4.2, 4.3, 5.2, 5.3

1.02 November 04, 2011 Added Section 6.2 RAM dump tool, corrected header level for 6.1

1.03 March 15, 2012 Added section 4.2; Updated/revised sections 2 and 3.

1.04 November 07, 2012
Added SL9090 as supported device in Section 2.3; Added PDS & SWIOMA
Sample App in Section 5; Update titling on Section 4.4; Update code routine
at Section 3.3.1

1.05 February 05, 2013
Updated architecture diagram for multiple application support in Section 1.1;
Updated connection APIs in Section 3.4; Added call handling sample
application in Section 5;

1.06 June 24, 2013 Updated Section 3.3, User Application Development.

1.07 July 26, 2013 Added new section for AirVantage agent integration

1.08 October 18, 2013 Added new section for AirVantage agent auto start preprocessor section 6.2

1.09 December 04, 2013 Added section 4.5 for one command line firmware downloader

1.10 January 16, 2014 rename folder name from avagent_r8 to avagent_r8m

1.11 March 07, 2014 Added multiple module management section 3.3.1

1.12 May 07, 2014 Updated modules & PID list in Section 2.2 Supported Devices

1.13 June 12, 2014
Removed multiple modems not supported from the unsupport feature
section

1.14 July 10, 2014 Updated section 6

1.15 July 22, 2014 Add remote DM log capture section 9

1.16 July 22, 2014 Add List of automatic re-register callback in section 10

1.17 October 17; 2014 Add Debug Information Section 12

1.18 February 03; 2015 Update /sys/modules path at section 2.3.7

1.19 April 09; 2015 Add SQF Filter Editing in tools section

1.20 April 28; 2015 Add EM7455 in Supported Device version

1.21 July 06; 2015
• Add limitation section

• Add how to blacklist qcserial & qmi_wwan kernel modules

1.22
September 09,
2015

Add Section 5.6 EM/MC74xx device based image switching

1.23 December 4, 2015 Updated supported devices & PID for EM/MC74xx

1.24 June 3, 2016 Add Lite APIs section

1.25 July 12, 2016 Introduce Lite APIs vs Full APIs

1.26 November 10, 2016 Update List of Tables

1.27 April 19, 2018 Update Firmware Download application usage

4110914 Rev 1.2 Apr 19, 201 5

Contents

1. ABBREVIATIONS AND DEFINITIONS .. 8

2. INTRODUCTION .. 9

3. PREREQUISITES ... 10

3.1. Supported Processors ... 10

3.2. Supported Devices .. 10

3.3. Device Drivers ... 11

3.3.1. Host Setup.. 11

3.3.2. Acquiring the Drivers .. 11

3.3.3. Supported Linux Kernels .. 11

3.3.4. System Dependencies ... 11

3.3.5. Building and Installing the Drivers .. 11

3.3.6. Querying Driver Versions and Supported Devices .. 12

3.3.7. Unloading the Drivers ... 12

3.3.8. Enabling and Disabling the Drivers’ Diagnostic Messages 13

3.3.9. Verifying Proper Driver Operation .. 13

3.4. Defined Compilation Flags .. 13

3.5. Linked Libraries required for Full APIs .. 13

4. FULL APIS SYSTEM ARCHITECTURE .. 13

5. FULL APIS GETTING STARTED ... 16

5.1. QMI SDK Limitations ... 16

5.1.1. Multiple application processes limitation .. 16

5.1.2. Multi API processing within a host application ... 16

5.2. Full APIs Callback that auto re-register ... 16

5.3. User Application Development .. 17

5.3.1. SDK Process .. 17

5.3.1.1. Building the SDK Executable .. 17

5.3.1.2. Verifying SDK and Target Platform Interoperability .. 17

5.3.2. User Application Process ... 18

5.3.2.1. Building the Application Executable .. 18

5.3.2.2. Communicating with the Device .. 18

5.3.3. User Application Development ... 18

5.3.3.1. Multiple Module Management ... 18

5.3.3.2. Where to Start ... 19

5.3.3.3. QCWWANDisconnect API ... 21

5.3.3.4. Terminating the SDK Process ... 22

5.3.3.5. Device Resets ... 22

5.3.4. UMTS, LTE, and CDMA Data Sessions .. 22

5.3.4.1. Profile Configuration .. 22

5.3.4.2. Session Initiation and Termination .. 23

5.4. SLQS Image Management .. 24

4110914 Rev 1.2 Apr 19, 201 6

Application Developer's Guide Abbreviations and definitions

5.4.1. Firmware Upgrade Process ... 24

5.4.2. QDL Image Download .. 25

5.4.3. AR75xx, EM74xx, MC73xx and MC7700/10/50 Modem Image Management 26

5.4.3.1. MC7xxx Image Management Sample Application .. 26

5.4.4. MC83xx, MC9090 and SL9090 Image Management ... 27

5.4.4.1. Gobi Image Management Sample Application .. 27

5.4.5. One Command Line Firmware Downloader Sample Application............................. 28

5.4.6. EM/MC74xx Device based image switching .. 30

5.5. Other Sample Applications .. 33

5.5.1. Call Handling Sample Application .. 33

5.5.2. Connection Manager Sample Application .. 33

5.5.3. SMS Sample Application .. 34

5.5.4. SLQS Tutorial Sample Application ... 34

5.5.4.1. Using the SLQS Tutorial .. 35

5.5.5. Connection Manager Sample Application .. 37

5.5.6. Position Determination Service Sample Application .. 38

5.5.7. SWIOMA Sample Application .. 38

5.6. AirVantage Agent Integration .. 39

5.6.1. Auto Start Preprocessor ... 39

5.6.2. Agent Configuration File ... 39

5.6.3. Agent Constrains .. 39

5.6.4. Agent Source Tree ... 39

5.6.5. Start/Stop the AirVantage Agent .. 39

5.6.6. AirVantage M2M Cloud .. 40

5.7. Full APIs Debug Information ... 40

6. LITE APIS GETTING STARTED .. 43

6.1. Using Lite SDK wrapper to encode/decode QMI messages ... 43

6.2. Steps to run packing demo sample app .. 43

6.3. Application to retrieve modem’s model id.. 44

6.4. Compile and Run ... 45

6.5. Wrapper headers and libraries .. 45

7. TOOLS ... 46

7.1. DM Logging Tool ... 46

7.2. RAM Dump Tool .. 46

7.3. SQF Filter Editing .. 48

8. DOCUMENTATION .. 48

9. REFERENCE DOCUMENTS .. 49

4110914 Rev 1.2 Apr 19, 201 7

List of Figures

Figure 1. Lite APIs vs Full APis .. 9

Figure 2. SLQS System Architecture .. 14

Figure 3. SLQS API Modules ... 15

Figure 4. SLQS Image Management Sequence Diagram .. 24

Figure 5. QDL Service Sequence Diagram .. 25

4110914 Rev 1.2 Apr 19, 201 8

List of Tables

Table 1. Supported Application-Mode VID/PIDs ... 10

Table 2. Supported Boot-Mode VID/PIDs ... 10

1. Abbreviations and definitions

Abbreviation/Acronym Definitions

MSM Mobile Station Modem

PRI Product Release Instructions

QMI Qualcomm MSM Interface

SLQS Sierra Linux QMI SDK

WP Work Package

SDK Software Development Kit

SQF Sierra Filter File

QDL Qualcomm download mode

Image Modem Firmware Image

4110914 Rev 1.2 Apr 19, 201 9

2. Introduction

QMI is a binary protocol designed to replace the AT command based communication with modems.
This protocol is used by some Sierra Wireless modules based on Qualcomm chipsets.

When a host processor based on Linux is driving such module, the Linux QMI SDK allows to ease the
software integration on host side.

From Linux QMI SDK 4 version, two different architectures can be adopted depending on feature
needs and constraints:

• Lite APIs: this is a tiny version adapted to low memory footprint. This layer is only managing
QMI messages encoding (request) and decoding (response/indication) through function calls.

• Full APIs: this is a more complete version adapted to less constrained environment. It comes
with some processes handling memory allocations, timers, machine-state to provide features
such as:

o Modem detection/scanning
o Modem mode management: application or boot-hold(firmware download)
o QMI port multiplex for applications & scheduling
o Modem firmware update

Figure 1. Lite APIs vs Full APis

4110914 Rev 1.2 Apr 19, 201 10

3. Prerequisites

3.1. Supported Processors

The following processors are supported:

• x86 (32bit & 64bit)

• ARM

• PPC

• MIPS

3.2. Supported Devices

The following devices are supported:

• MC77xx

• MC83x5

• SL/MC9090

• EM/MC73xx

• AR7554

• EM/MC74xx

Note: MC77xx devices must operate in “QMI Mode” and not in “Direct-IP” mode.

The tables below list the hexadecimal values of the Vendor ID (VID) and Product ID (PID) pairs
supported by the QMI SDK.

Table 1. Supported Application-Mode VID/PIDs

VID 1199 1199 1199 1199 1199 1199 3F0 1199 1199 1199

PID 68A2 68C0 9011 9013 9015 9019 371D 9040 9041 9071

Table 2. Supported Boot-Mode VID/PIDs

VID 1199 1199 1199 1199 1199 1199 3F0 1199

PID 68A2 68C0 9010 9012 9014 9018 361D 9070

To check your device’s VID/PID, issue the lsusb command. The output will present a list of USB

devices with a column showing each device’s manufacturer. The device VID/PID can be read from the
row containing the correct device manufacturer. Additionally, on MC77xx devices, you can use the
AT!UDINFO? command to check VID/PID information. If your VID/PID does not match the any of the

entries in the tables above, contact your FAE for support.

4110914 Rev 1.2 Apr 19, 201 11

Application Developer's Guide Prerequisites

3.3. Device Drivers

3.3.1. Host Setup

The Linux distribution may have in built drivers and applications that can interfere with SDK process’s
execution. The below Qualcomm drivers, if present, need to be black listed.

• qcserial

• qmi_wwan

Please black list them as below (example is for Ubuntu). Add the 2 entries to the
“/etc/modprobe.d/blacklist-modem.conf” file and restart the host
blacklist qcserial

blacklist qmi_wwan

“Modem Manager” is another application that can interfere with the SDK’s operation. Please remove it

and restart the host. Below example is for an Ubuntu PC:

#sudo apt-get remove modemmanager
#sudo killall -9 modemmanager
#sudo reboot

During firmware upgrade, the SDK process need to read/write modem’s serial ports. Please make
sure there is no background process reading/writing modem’s serial ports at the same time. For
example, qmi_daemon.

3.3.2. Acquiring the Drivers

Get in touch with your FAE for acquiring drivers for your device if you are operating in QMI mode – the
mode of operation required for using the QMI SDK.

3.3.3. Supported Linux Kernels

Sierra Wireless supports open source kernel version 2.6.32 or newer. Both 32 bit and 64 bit versions
of Linux/UNIX are supported. It is the customer’s responsibility to modify the SDK and drivers for
kernels outside the scope of what is supported.

3.3.4. System Dependencies

Make sure you have a network connection and issue the following commands:

sudo apt-get install build-essential make gcc

sudo apt-get install linux-headers-`uname -r`

3.3.5. Building and Installing the Drivers

cd GobiSerial; make; sudo make install

cd GobiNet; make; sudo make install

sudo modprobe GobiSerial [debug=Y]

4110914 Rev 1.2 Apr 19, 201 12

Application Developer's Guide Prerequisites

sudo modprobe GobiNet [debug=Y]

EM/MC74xx only support RAWIP mode, please build GobiNet with RAWIP=1 switch

cd GobiNet; make RAWIP=1;

3.3.6. Querying Driver Versions and Supported Devices

modinfo GobiSerial

modinfo GobiNet

3.3.7. Unloading the Drivers

sudo rmmod GobiSerial

sudo rmmod GobiNet

4110914 Rev 1.2 Apr 19, 201 13

Application Developer's Guide Full APIs System Architecture

3.3.8. Enabling and Disabling the Drivers’ Diagnostic
Messages

Note: Enabling and disabling the driver’s diagnostic messages requires root privileges.

Enable diagnostic messages:

echo 1 > /sys/module/GobiSerial/parameters/debug

echo 1 > /sys/module/GobiNet/parameters/debug

Disable diagnostic messages:

echo 0 > /sys/module/GobiSerial/parameters/debug

echo 0 > /sys/module/GobiNet/parameters/debug

3.3.9. Verifying Proper Driver Operation

1. Open terminal and type tailf /var/log/syslog.

2. Plug in the Sierra Wireless device.

3. Check /dev/ for existence of the following devices (check syslog in case the device nodes are
static i.e. built into the kernel image and not dynamically mounted). Please note that the
second QMI interface is available only when the device is in multi-pdn mode (/dev/qcqmiy).

▪ /dev/ttyUSB0

▪ /dev/ttyUSB1

▪ /dev/ttyUSB2

▪ /dev/qcqmix where x is an integer starting at 0

▪ /dev/qcqmiy where y is an integer starting at 0

3.4. Defined Compilation Flags

Below flags are defined for SDK compilation or all architectures “-Wall -Werror -Wextra”.

Specific architectures may have other flags defined.

3.5. Linked Libraries required for Full APIs

• rt

• pthread

4. Full APIs System Architecture

The Full APIs system architecture is described as follows.

• The Application process communicates with the device by executing Full APIs.

• The host application which is statically linked to the Full library

4110914 Rev 1.2 Apr 19, 201 14

Application Developer's Guide Full APIs System Architecture

• The API calls are translated in QMI request SDUs that are sent to the SDK process over a
local IPC datagram socket.

• The SDK writes the QMI PDUs to a device file named /dev/qcqmix, where x is an integer,
associated with the QMI interface.

• The QMI PDUs are sent to the device over the USB control channel via the GobiNet.ko driver
module

• Notifications are received over the interrupt channel, which prompts the driver to read the
responses coming over the USB control channel.

• The SDK reads the QMI response from /dev/qcqmix and sends a response to the application
process over a local IPC datagram socket.

Figure 2. Full APIs System Architecture

MULTIPLE APPLICATION PROCESS (host application)

Maximum support 3 applications

Full APIs (SLQS library linked to host application)

SDK PROCESS (stand alone Linux process)

/dev/qcqmix

GobiNet.ko

USB Interrupt Pipe USB Control Pipe

/dev/ttyUSBx

GobiSerial.ko

USB Serial Interface

4110914 Rev 1.2 Apr 19, 201 15

Application Developer's Guide Full APIs System Architecture

Figure 3. Full APIs Modules

The CBK service and SWI service provides services for all modules.

Device Connectivity
Service (DCS)

Wireless Data Service
(WDS)

Device Management
Service (DMS)

Network Access Service
(NAS)

Firmware Management
Service (FMS)

Short Message Service
(SMS)

Position Determination
Service (PDS)

Card Application Toolkit
(CAT)

Remote Management
Service (RMS)

Open Mobile Alliance
Service (OMA)

Specific Absorption Rate
(SAR)

Voice Service (VOICE)

User Identity Module
Service (UIM)

Audio Service (AUDIO)

Quality of Service (QOS)

IMS Service (IMS)

SWI Audio
Service(SWIAUDIO)

SWI Open Mobile Alliance
Service (SWIOMA)

CallBack registration
(CBK)

Non-service specific APIs
(SWI)

4110914 Rev 1.2 Apr 19, 201 16

Application Developer's Guide Full APIs Getting Started

5. Full APIs Getting Started

5.1. QMI SDK Limitations

5.1.1. Multiple application processes limitation

• The SDK process can communicate with a maximum of 3 different host applications

5.1.2. Multi API processing within a host application

• The SDK process can process only one QMI command at any point of time. Multiple calls made
to the SDK will be serialized using a mutex

• The host application has to make allowances for this behavior and ensure that the thread that
holds the mutex will get a time slice to release the mutex

5.2. Full APIs Callback that auto re-register

When Modem detach and re-attach, the SDK re-register some callback internally.

Below is the list of automatically re-register callback. For other callback, please manually re-register
when modem re-attached.

• SetMobileIPStatusCallback

• SLQSSetWdsEventCallback

• SLQSSetWdsTransferStatisticCallback

• SLQSSetDUNCallInfoCallback

• SLQSSetDataSystemStatusCallback

• SetActivationStatusCallback

• SetPowerCallback

• SLQSSetModemTempCallback

• SetSignalStrengthCallback

• SetRFInfoCallback

• SLQSSetSignalStrengthsCallback

• SetLURejectCallback

• SLQSNasSysInfoCallBack

• SLQSNasNetworkTimeCallBack

• SetNMEACallback

• SetNewSMSCallback

• SLQSSetSMSEventCallback

• SLQSWmsMemoryFullCallBack

• SLQSWmsMessageWaitingCallBack

• SetCATEventCallback

• SetOMADMStateCallback

• SetSLQSOMADMAlertCallback

• SLQSVoiceSetSUPSNotificationCallback

• SLQSVoiceSetAllCallStatusCallBack

• SLQSVoiceSetPrivacyChangeCallBack

• SLQSVoiceSetDTMFEventCallBack

• SLQSVoiceSetSUPSCallBack

• SLQSUIMSetStatusChangeCallBack

4110914 Rev 1.2 Apr 19, 201 17

Application Developer's Guide Full APIs Getting Started

• SLQSSetSIPConfigCallback

• SLQSSetRegMgrConfigCallback

• SLQSSetIMSSMSConfigCallback

• SLQSSetIMSUserConfigCallback

• SLQSSetIMSVoIPConfigCallback

5.3. User Application Development

5.3.1. SDK Process

5.3.1.1. Building the SDK Executable

navigate to pkgs: cd pkgs

clean then build: make –f pkgs.mak complete

clean: make –f pkgs.mak clean

build: make –f pkgs.mak

5.3.1.2. Verifying SDK and Target Platform Interoperability

The SDK periodically checks to see if a supported device is connected to the target platform. If you do
not see the following message1 in your logs, then the device has not been detected and the SDK will
not be able to communicate with the device. In this case, it is most likely that you are either using an
unsupported device or that your drivers need to be updated to support the device.

usb 2-1.5: new high speed USB device using ehci_hcd and address 10

usb 2-1.5: config 1 has an invalid interface number: 8 but max is 3

usb 2-1.5: config 1 has no interface number 1

usb 2-1.5: configuration #1 chosen from 1 choice GobiSerial 2-1.5:1.0:

GobiSerial converter detected

usb 2-1.5: GobiSerial converter now attached to ttyUSB0 GobiSerial 2-

1.5:1.2: GobiSerial converter detected

usb 2-1.5: GobiSerial converter now attached to ttyUSB1 GobiSerial 2-

1.5:1.3: GobiSerial converter detected

usb2-1.5: GobiSerial converter now attached to ttyUSB2

usb0: register 'GobiNet' at usb-0000:00:1d.0-1.5, QmiNet Ethernet

Device, 3e:a6:1f:b3:66:62

SWI SDK Process: USDT:Device State Change 0 -> 1

creating qcqmi0

USDT:Device State Change 1 -> 1

If you see the message above but do not see the following message in your logs, then the device’s
interfaces have not been successfully mapped to their respective /dev/ttyUSBx and/or /dev/qcqmix
device special files and the SDK will not be able to communicate with the device.

USDT:Device State Change 1 -> 2

USDT:Device ready: VID 1199, PID 68a2, 4 interfaces

1 SDK messages will be displayed in both /var/log/user.log and /var/log/syslog.

4110914 Rev 1.2 Apr 19, 201 18

Application Developer's Guide Full APIs Getting Started

QM:qm_ds_handle_app_dev_ready: devstate 1

QM:SDK<-Mdm: ch/QMImsgid/QMImsglen/IPCmsglen: 1/0000/0/25

QM:DS Device Event Notification received 1

In this case, it is possible that:

1. your drivers don’t support the inserted device;

2. you have not added a device node for /dev/qcqmix (usually 0 or 1) with the proper major and
minor numbers;

3. the interface configuration of your device is not supported by the SDK; or

4. the SDK’s device scanning routine requires custom modifications specific to your platform’s
sysfs/sys/bus/usb/devices entry for the device in question. The major and minor numbers of
the device can be determined by issuing ls -l /dev/qcqmix on the command line. The

fourth and fifth columns contain the major and minor numbers, respectively (see man ls for

details).

5.3.2. User Application Process

5.3.2.1. Building the Application Executable

Refer to any one of the sample applications’ make files as a starting point for writing a script for
building your application. Remember to add the “strip” command to your script in order to remove

all symbol information from your libraries and application image if your system is memory constrained.

5.3.2.2. Communicating with the Device

The application must adhere to the SDK’s stop and wait (synchronous execution) protocol; there can
be only one outstanding transaction between the application and SDK, at any time. All API function
calls are blocking and execute within the context of the application process. When the application
executes API function, the corresponding request is constructed and sent to the SDK process over a
local IPC. The request (response) is sent to (received from) the device from within the execution
context of the SDK process. The response from the device is validated and sent back to the
application process over a local IPC socket. After which, the message contents are unpacked and
used for populating the user supplied arguments.

Notifications, on the other hand, are asynchronous and therefore, may arrive at any time. The
application receives notifications within the execution context of a dedicated notification thread that is
created and used by the SDK within the application’s process. Thus, it is important that minimal
processing be done inside the registered callback functions.

5.3.3. User Application Development

5.3.3.1. Multiple Module Management

Since SLQS03.03.00, Sierra Wireless has introduced multiple module management, also known as
multi modem support. The SLQSStart is used to select which modem to control. Passing 0, 1 and 2
will select the first, second and third modem detected. It supports a maximum of 12 modems.

The qatest is already updated to support multiple modems as an example. There is a “-d” command

line switch to specify modem index.

The following example controls the first and second modems.

4110914 Rev 1.2 Apr 19, 201 19

Application Developer's Guide Full APIs Getting Started

sudo ./pkgs/qa/qatesthostx86_64 -r -d0

sudo ./pkgs/qa/qatesthostx86_64 -r -d1

5.3.3.2. Where to Start

The Connection Manager Sample Application is a good place to start. The source code is located at
SampleApps/ Connection_Manager/src/connectionmgr.c.

The following outlines the recommended method for integrating SLQS initialization code into your
application. Note that all variables below are assumed to have been defined.

/* Set the SDK executable path for your target platform */

 if(SUCCESS != (resultCode = SetSDKImagePath(sdkbinpath)))

 {

 rcprint(__func__, resultCode);

 return resultCode;

 }

 /* Launch the SDK process and create IPC sockets over which the APP and SDK

 * will exchange messages.

 */

 if(SUCCESS != (resultCode = SLQSStart(modem_index)))

 {

 /* first attempt failed, kill SDK process */

 if(SUCCESS != SLQSKillSDKProcess())

 {

 return resultCode;

 }

 else

 {

 /* start new SDK process */

 if(SUCCESS != (resultCode = SLQSStart(modem_index)))

 {

 return resultCode;

 }

 }

 }

 /* Enumerate the device */

 while (QCWWAN2kEnumerateDevices(&devicesSize, (BYTE *)pdev) != 0)

 {

 printf ("\nUnable to find device..\n");

 sleep(1);

 }

4110914 Rev 1.2 Apr 19, 201 20

Application Developer's Guide Full APIs Getting Started

 #ifdef DBG

 fprintf(stderr, "#devices: %d\ndeviceNode: %s\ndeviceKey: %s\n",

 devicesSize,

 pdev->deviceNode,

 pdev->deviceKey);

 #endif

 /* Connect to the SDK */

 resultCode = QCWWANConnect(pdev->deviceNode,

 pdev->deviceKey);

 /* Subscribe to all the required callbacks */

 SubscribeCallbacks();

/* Graceful SLQS teardown */

void QuitApplication()

{

 free(sdkbinpath);

 fprintf(stderr, "Exiting Application!!!\n");

 /* Unsubscribe all the callback which was called previously */

 UnSubscribeCallbacks();

 closeLogFile();

 /* If the application is connected to the SDK, then disconnect to (1)

 * terminate threads and free resources that have been created and allocated,

 * respectively, for communicating with the device, and (2) allow other

 * applications to communicate with the device via the SDK.

 */

 QCWWANDisconnect();

 exit(EXIT_SUCCESS);

}

/* macro used in code segments above */

#define rcprint(s, u) syslog(LOG_USER, "%s: rc = 0x%lX, %s", s, u, slqserrstr(u))

/* You can add error code to error string mapping to the table below in order to

 * aid your application debugging.

 */

typedef struct{

 enum eQCWWANError e;

 const char *es;

}slqserr_s;

4110914 Rev 1.2 Apr 19, 201 21

Application Developer's Guide Full APIs Getting Started

static slqserr_s errstr[] =

{

 { eQCWWAN_ERR_INTERNAL, "eQCWWAN_ERR_INTERNAL" },

 { eQCWWAN_ERR_MEMORY, "eQCWWAN_ERR_MEMORY" },

 { eQCWWAN_ERR_INVALID_ARG, "eQCWWAN_ERR_INVALID_ARG" },

 { eQCWWAN_ERR_BUFFER_SZ, "eQCWWAN_ERR_BUFFER_SZ" },

 { eQCWWAN_ERR_NO_DEVICE, "eQCWWAN_ERR_NO_DEVICE" },

 { eQCWWAN_ERR_SWIDCS_IOCTL_ERR, "eQCWWAN_ERR_SWIDCS_IOCTL_ERR" },

 { eQCWWAN_ERR_QMI_MISSING_ARG, "eQCWWAN_ERR_QMI_MISSING_ARG" },

 { eQCWWAN_ERR_SWICM_SOCKET_IN_USE, "eQCWWAN_ERR_SWICM_SOCKET_IN_USE" },

 { eQCWWAN_ERR_SWIDCS_DEVNODE_NOT_FOUND, "eQCWWAN_ERR_SWIDCS_DEVNODE_NOT_FOUND" },

 { eQCWWAN_ERR_SWIDCS_IOCTL_ERR, "eQCWWAN_ERR_SWIDCS_IOCTL_ERR" },

 { eQCWWAN_ERR_SWIDCS_APP_DISCONNECTED, "eQCWWAN_ERR_SWIDCS_APP_DISCONNECTED" },

 { eQCWWAN_ERR_SWICM_QMI_SVC_NOT_SUPPORTED, "eQCWWAN_ERR_SWICM_QMI_SVC_NOT_SUPPORTED" },

 { 0, "" }

};

static const char *slqserrstr(ULONG er)

{

 int count = 0;

 while(errstr[count].e){

 if(errstr[count].e == er)

 {

 return errstr[count].es;

 }

 count++;

 }

 return "";

}

5.3.3.3. QCWWANDisconnect API

When your application no longer needs to communicate with the device it should execute the
QCWWANDisconnect API in order to:

1. free the resources allocated by the SDK for communicating with the device;

2. deregister from all but the device state change callback; and

3. allow other applications to use the services of the SDK. As long as the device is connected to
the target and the SDK process is alive, an application can always reconnect at a later time.

4110914 Rev 1.2 Apr 19, 201 22

Application Developer's Guide Full APIs Getting Started

5.3.3.4. Terminating the SDK Process

To kill the SDK process, execute the SLQSKillSDKProcess API. Note that this API requires that the
SDK image be named slqssdk, as is the case for the images located in the build/bin sub-directories
of the SDK release.

5.3.3.5. Device Resets

Assuming the application has registered for the device state change callback, it will be notified
whenever a device is disconnected or detected. Following a device reset, once the device has been
detected by the SDK, all of the callback functions that the application had registered for will be re-
registered by the SDK on the application’s behalf. Thus, the application need not take any action on a
device reset aside from managing itself.

5.3.4. UMTS, LTE, and CDMA Data Sessions

This section describes the APIs for configuring profiles for use in a data session call; as well as
starting and stopping data session calls. For details of the API parameters, refer to the doxygen
documentation of the APIs.

5.3.4.1. Profile Configuration

Profiles must be set before a data call can be made. Some carriers fix the profiles that can be used on
their network. Without the use of SDK APIs, profiles can be created or modified using AT commands.
The SDK provides the following APIs for profile configuration:

• GetDefaultProfile

• SetDefaultProfile

• GetDefaultProfileLTE

• SetDefaultProfileLTE

The APIs above write and get the default profile to and from the device, respectively. The default
profile will be the one used to establish a data session. The LTE version supports IPV6 in addition to
IPV4.

The following APIs perform the same functionality as the APIs above, but allow a profile ID to be
specified. Valid profile ID values are 1 to 16.

• SLQSGetProfile

• SLQSSetProfile

The following API deletes a configured profile stored on the device. The deletion of a profile does not
affect profile index assignments.

• SLQSDeleteProfile

The following API is used to create a new profile with the specified parameters. Note that some
firmware versions do not support the optional Profile ID parameter. In this case an error will be
returned and the caller can subsequently create a profile by specifying a NULL pointer for the Profile
ID parameter. The Profile ID pertaining to the newly created profile is returned in the response
structure parameter.

4110914 Rev 1.2 Apr 19, 201 23

Application Developer's Guide Full APIs Getting Started

• SLQSCreateProfile

This API is used to create a new profile with the specified parameters.

• SLQSModifyProfile

5.3.4.2. Session Initiation and Termination

The API, SLQSStartStopDataSession, will use the default profile set up as described above to make
a data connection. Some networks may require authentication fields.

To start a data session after a device has been enumerated, the following API may be used. Note that
technology should be changed for the appropriate network – UMTS or CDMA; and that the optional
parameters below are left as NULL for simplicity. Some of the optional parameters are supplied by the
user as preferred information. The network may not be able to assign the preferred values and assign
other values instead. In that case, the SLQSGetRuntimeSettings API may be used to retrieve some
of this information once a data session has been established. This API supports IPV4, IPV6, and
IPV4V6 data sessions specified by ipfamily member of struct ssdatasession_params.

ULONG technology = 1; //3GPP

ULONG profile_idx = 1;

struct ssdatasession_params session;

session.action = 1; //start data session

session.pTechnology = &technology;

session.pProfileId3GPP = &profile_idx;

session.pProfileId3GPP2 = NULL;

session.ipfamily = 4; //IPv4

rc = SLQSStartStopDataSession(&session);

To terminate any currently active data session given the session pointer, the following API is used.

session.action = 0; //stop data session

rc = SLQSStartStopDataSession(&session);

4110914 Rev 1.2 Apr 19, 201 24

5.4. SLQS Image Management

The Gobi Image Management and MC77xx Image Management sample applications can be used to:

1. Query information about the firmware stored on the device

2. Query information about firmware images stored on the host

3. Download firmware to the device

5.4.1. Firmware Upgrade Process

APPLICATION SDK DEVICE

SetDeviceStateChangeCbk
Request

QMI_DCS_ EVENT_REPORT_IND_REQ

APPLICATION
MODE

SetDeviceStateChangeCbk
Response

QMI_DCS_ EVENT_REPORT_IND_RSP

SetFwDldCompletionCbk
Request

QMI_FMS_ EVENT_REPORT_IND_REQ

SetFwDldCompletionCbk
Response

QMI_FMS_ EVENT_REPORT_IND_RSP

UpgradeFirmware2k
Request

QMI_DCS_SET_IMAGE_PATH_REQ

 QMI_DCS_SET_IMAGE_PATH_RSP

 QMI_DMS_SET_FIRMWARE_PREFERENCE_REQ

 QMI_DMS_SET_FIRMWARE_PREFERENCE_RSP

 QMI_DMS_SET_OPERATING_MODE_REQ

UpgradeFirmware2k
Response

QMI_DMS_SET_OPERATING_MODE_RSP

 QDL IMAGE DOWNLOAD

(refer to section 5.4.2 QDL Image Download for details)
QDL MODE

 DEVICE DETECTION

APPLICATION
MODE

FirmwareDldCallback QMI_FMS_EVENT_REPORT_IND (Fw Dld Completion evt)

DeviceReadyCallback QMI_DCS_EVENT_REPORT_IND (Device Ready evt)

SLQSGetFirmwareInfo
Request

QMI_DMS_SWI_GET_CWE_PKGS_INFO_REQ

QMI_DMS_GET_DEVICE_REV_ID_REQ (MC83xx)

SLQSGetFirmwareInfo
Response

QMI_DMS_SWI_GET_CWE_PKGS_INFO_RSP

QMI_DMS_GET_DEVICE_REV_ID_RSP (MC83xx)

Figure 4. SLQS Image Management Sequence Diagram

4110914 Rev 1.2 Apr 19, 201 25

Application Developer's Guide

Based on the figure above:

1. The Application may choose to register for a firmware download completion callback in order
to be notified when the image download process has completed. Additionally, the application
should register for the device state change callback in order to be notified of when the device
has entered application mode subsequent to the image download, and is ready to
communicate with the host.

2. To upgrade the firmware on the device, the application must issue the UpgradeFirmware2k
API.

3. The Application should not issue any further API requests until the firmware download has
completed and the device is ready.

4. Reception of the firmware download completion callback does not guarantee that the
download process was successful. Once the device is ready, the application should issue the
GetFirmwareRevisions API (for MC83xx devices) or the SLQSGetFirmwareInfo API (for
MC77xx devices) to determine if the upgrade was successful.

5.4.2. QDL Image Download

SDK DEVICE

SetQDLTimeout

GetAvailableQDLPorts

OpenQDLPort

GetQDLImagePreferences

QDL_CMD_GET_IMAGE_PREFERENCES_REQ (0x2E)

 QDL_CMD_GET_IMAGE_PREFERENCES_RSP (0x2F)

DownloadFirmwareImages

GetImageBy UniqueID

GetImageStore

GetImageInfo

MapVersionInfo

GetImageBootCompatibility(Mjr, Mnr numbers)

ReverseBinaryDataSearch(MBN_BOOT_MGC)

PrepareQDLImageWrite

 OPEN UNFRAMED REQ (0X25)

 OPEN UNFRAMED RSP (0X26)

WriteQDLImageBlock

 UNFRAMED WRITE REQ (0X27)

 UNFRAMED WRITE RSP (0X28)

ValidateQDLImages

 DONE REQ PACKET (0X29)

 DONE RSP PACKET (0X2A)

CloseQDLPort

 DONE FINAL REQ PACKET (0X2D)

Figure 5. QDL Service Sequence Diagram

4110914 Rev 1.2 Apr 19, 201 26

Application Developer's Guide

5.4.3. AR75xx, EM74xx, MC73xx and MC7700/10/50
Modem Image Management

5.4.3.1. MC7xxx Image Management Sample Application

Location: SampleApps/MC77xx_Image_Management/

Purpose: Query image information for a MC7xx image located on the host

 Query image information for the image running on a MC77xx device

 Download firmware to a MC77xx device

Build: i686: make

 ARM: make CPU=arm9

 Power PC: make CPU=ppc

 MIPS BE: make CPU=mips

 MIPS LE: make CPU=mipsel

Execute:

 i686: sudo ./bin/mc7xximgmgmthosti686 ../../build/bin/hosti686/slqssdk

 ARM: sudo ./bin/mc7xximgmgmtarm9 ../../build/bin/arm/slqssdk

 PPC: sudo ./bin/mc7xximgmgmtppc ../../build/bin/ppc/slqssdk

 MIPS BE: sudo ./bin/mc7xximgmgmtmips ../../build/bin/mips/slqssdk

 MIPS LE: sudo ./bin/mc7xximgmgmtmipsel ../../build/bin/mipsel/slqssdk

Reference: SampleApps/MC77xx_Image_Management/readme.txt

The only supported file is a *_SPKG.cwe file.

The program must be executed from the SampleApps/MC77xx_Image_Management directory with
the instructed execute command above.

There must only be one *.cwe or *.spk file in the path specified for any option which requires the user
to specify a path.

If errors are encountered when specifying a relative path, specify the fully qualified path instead. For
more details, refer to the readme.txt file

4110914 Rev 1.2 Apr 19, 201 27

Application Developer's Guide

5.4.4. MC83xx, MC9090 and SL9090 Image Management

5.4.4.1. Gobi Image Management Sample Application

Location: SLQSab.cd.ef /SampleApps/Gobi_Image_Management/

Purpose: Query carrier image information for Gobi images located on the host

 Query carrier image information for the images stored on a device

 Download firmware to a device

Build: i686: make

 ARM: make CPU=arm9

 Power PC: make CPU=ppc

 MIPS BE: make CPU=mips

 MIPS LE: make CPU=mipsel

Execute:

 i686: sudo ./bin/gobiimgmgmthosti686 ../../build/bin/hosti686/slqssdk

 ARM: sudo ./bin/gobiimgmgmtarm9 ../../build/bin/arm/slqssdk

 PPC: sudo ./bin/gobiimgmgmtppc ../../build/bin/ppc/slqssdk

 MIPS BE: sudo ./bin/gobiimgmgmtmips ../../build/bin/mips/slqssdk

 MIPS LE: sudo ./bin/gobiimgmgmtmipsel ../../build/bin/mipsel/slqssdk

Reference: SLQSab.cd.ef /SampleApps/Gobi_Image_Management/readme.txt

The only supported file types are *.mbn files.

The program must be executed from the SampleApps/Gobi_Image_Management directory with the
instructed execute command above.

If errors are encountered when specifying a relative path, specify the fully qualified path instead. For
more details, refer to the readme.txt file

4110914 Rev 1.2 Apr 19, 201 28

Application Developer's Guide

5.4.5. One Command Line Firmware Downloader Sample
Application

Location: SLQSab.cd.ef /SampleApps/Firmware_Download/

Purpose: Perform a firmware download for the supported module by one command line.

Build: i686: make

 ARM: make CPU=arm9

 Power PC: make CPU=ppc

 MIPS BE: make CPU=mips

 MIPS LE: make CPU=mipsel

Execute:

 i686: sudo ./bin/fwdldhosti686 -s ../../build/bin/hosti686/slqssdk -d
[9x00/9x15/g3k/9x30/9x07/9x50/9x06] -p [pathname] -i 1

 ARM: sudo ./bin/fwdldhostarm -s ../../build/bin/arm/slqssdk -d
[9x00/9x15/g3k/9x30/9x07/9x50/9x06] -p [pathname] -i 1

 PPC: sudo ./bin/fwdldppc -s ../../build/bin/ppc/slqssdk -d
[9x00/9x15/g3k/9x30/9x07/9x50/9x06] -p [pathname] -i 1

 MIPS BE: sudo ./bin/fwdldmips -s ../../build/bin/mips/slqssdk -d
[9x00/9x15/g3k/9x30/9x07/9x50/9x06] -p [pathname] -i 1

 MIPS LE: sudo ./bin/fwdldmipsel -s ../../build/bin/mipsel/slqssdk -d
[9x00/9x15/g3k/9x30/9x07/9x50/9x06] -p [pathname] -i 1

Please note that the command highlighted in red above depends on the module you are trying to
perform firmware download on. For example, if it is an MDM9x15 module such as AR7554, MC7304,
MC7355 etc. you have to specify the device with –d 9x15, then the path (folder of firmware images)
such as –p /tmp/firmware/AR7554.

Inside the firmware folder /tmp/firmware/AR7554, there should be two files: one is a .nvu file of the
particular firmware version. The other one can be a firmware file either with a .cwe or .spk file
extension.

Taking the AR7554 as an example, the whole procedure should be as enumerated below:

1. Prepare the firmware files (.nvu + .cwe or .spk) for the update, for example, by creating a
folder /tmp/firmware/AR7554.

tester@Ubuntu12.04:/tmp/firmware/AR7554$ ls

1101831_9902428_SWI9X15A_06.00.01.00_00_GENEU_006.000_000-field.spk

NVUP-9999999_9902428_GENEU-4G_006.000_000.nvu

cd SampleApps/Firmware_Download

1. Type command “sudo ./bin/fwdldhosti686 -s ../../build/bin/hosti686/slqssdk -d 9x15 -p
/tmp/firmware/AR7554 – i 1”

2. Once the firmware download starts, the console log should look like the following:

tester@Ubuntu12.04:~/projects/Linux_QMI_SDK/tags/SLQS03.02.03/SampleApps/Firmware
_Download$ sudo ./bin/fwdldhosti686 -s ../../build/bin/hosti686/slqssdk -d 9x15 -p
/tmp/firmware/AR7554 – i 1

4110914 Rev 1.2 Apr 19, 201 29

Application Developer's Guide

Detecting USB of the target

DONE

Communicating with the target

DONE

Switching to firmware download mode

......DONE

Downloading the firmware

..DONE

Rebooting the module

............DONE

Firmware Download SUCCESS

WP76xx, WP77xx and EM75xx modules use Firehose firmware download protocol, the SDK process
will select a correct protocol to perform firmware download, user only need to input correct module
family.

For more details on the usage of this Firmware_Download sample application, please read the
readme.txt file under the same directory SampleApps/Firmware_Download.

Also, note that:

• The only supported file types are *.nvu, *.cwe and *.spk files.

• The program must be executed from the SampleApps/Firmware_Download/ directory

4110914 Rev 1.2 Apr 19, 201 30

Application Developer's Guide

5.4.6. EM/MC74xx Device based image switching

The MC7xxx_Image_Switching sample application supports device based image switching on
EM/MC74xx. Below example switch from Verizon to ATT without host downloading firmware to
modem. The device image & host image have Storage Type of 0 and 1 respectively.

7. Image Switching on MC/EM74xx

Option: 7

Please specify the path (upto 510 Characters) or press <Enter> to return to the main menu: /tmp/invalid

Current Firmware info

Model ID: EM7455

BOOT Version: SWI9X30C_01.08.07.00

AMSS Version: SWI9X30C_01.08.07.00

SKU ID: 9101012

Package ID:

Carrier: 5

PRI version: 001.000

All Carrier Images on Host and Device

Index CarrierId FolderId Storage Type PriImageId PriBuildId FwImageId

FwBuildId

1 4 2 0 001.007_000 01.09.06.00_ATT ?_?

01.09.06.00_?

2 5 1 0 000.004_000 01.08.07.00_VERIZON ?_?

01.08.07.00_?

Please select from one of the above index or press <Enter> to return to main menu:

Option: 1

Do you want to switch the firmware of your choice (Y/N):

Option: y

Downloading

Firmware..

No Firmware download needed!

Applying SPKG updates - please wait 20 seconds...

4110914 Rev 1.2 Apr 19, 201 31

You can verify the switching with “AT!PRIID?”

Before image switching Active image

ati

Manufacturer: Sierra Wireless, Incorporated

Model: EM7455

Revision: SWI9X30C_01.08.07.00 r3743 CARMD-EV-FRMWR2 2015/08/13 23:07:36

ESN: 11601589393, 74184091

IMEI: 359073060004045

IMEI SV: 1

FSN: LF504300170302

+GCAP: +CGSM

OK

at!priid?

PRI Part Number: 5501012

Revision: 001.000

Customer: DevKit

Carrier PRI: 9999999_9904780_SWI9X30C_01.08.07.00_00_VERIZON_000.004_000

After Image switching active image

ati

Manufacturer: Sierra Wireless, Incorporated

Model: EM7455

Revision: SWI9X30C_01.09.06.00 r4004 CARMD-EV-FRMWR2 2015/09/01 20:44:43

ESN: 11601589393, 74184091

IMEI: 359073060004045

IMEI SV: 2

FSN: LF504300170302

+GCAP: +CGSM

OK

at!priid?

PRI Part Number: 5501012

Revision: 001.000

Customer: DevKit

Carrier PRI: 9999999_9904594_SWI9X30C_01.09.06.00_00_ATT_001.007_000

OK

4110914 Rev 1.2 Apr 19, 201 32

Application Developer's Guide

Inside the sample application, the API UpgradeFirmware2K is used to switch image within device.

When the path input to UpgradeFirmware2K is invalid, the inner most folder name will be parsed as
image slot index.

UpgradeFirmware2K input
path

Device/Host Image Carrier

/tmp/Swisscom/16 Host Image Swisscom

/tmp/Swisscom/2 Device Image ATT

/tmp/Swisscom/1 Device Image Verizon

The API to list device & host images is SLQSSwiGetAllCarrierImages

tree /tmp/swisscom

/tmp/swisscom

+-- 16

 +-- SWI9X30C_01.08.07.00.cwe

 +-- SWI9X30C_01.08.07.00_SWISSCOM_001.007_000.nvu

All Carrier Images on Host and Device

Index CarrierId FolderId Storage Type PriImageId PriBuildId

FwImageId FwBuildId

1 210 16 1 001.007_000 01.08.07.00_SWISSCOM ?_?

01.08.07.00_?

2 4 2 0 001.007_000 01.09.06.00_ATT ?_?

01.09.06.00_?

3 5 1 0 000.004_000 01.08.07.00_VERIZON ?_?

01.08.07.00_?

4110914 Rev 1.2 Apr 19, 201 33

Application Developer's Guide

5.5. Other Sample Applications

Information for Call Handling, Connection Manager, SMS and Developer Tutorial sample applications
are provided in the following sub-sections.

5.5.1. Call Handling Sample Application

Location: SampleApps/CallHandling_Application/

Purpose: Voice call testing includes dialing, answering and ending a call.

Build: i386: make

 ARM: make CPU=arm9

 Power PC: make CPU=ppc

 MIPS BE: make CPU=mips

 MIPS LE: make CPU=mipsel

Execute:

 i386: sudo ./callhandlinghosti386

 ARM: sudo ./callhandlinghostarm9

 PPC: sudo ./callhandlinghostppc

 MIPS BE: sudo ./callhandlinghostmips

 MIPS LE: sudo ./callhandlingmipsel

Reference: SampleApps/CallHandling_Application/readme.txt

5.5.2. Connection Manager Sample Application

Location: SampleApps/Connection_Manager/

Purpose: Starting and stopping data session for LTE, UMTS & CDMA

Build: i386: make

 ARM: make CPU=arm9

 Power PC: make CPU=ppc

 MIPS BE: make CPU=mips

 MIPS LE: make CPU=mipsel

Execute:

 i386: sudo ./connectionmanagerhosti386

4110914 Rev 1.2 Apr 19, 201 34

Application Developer's Guide

 ARM: sudo ./ connectionmanagerhostarm9

 PPC: sudo ./ connectionmanagerhostppc

 MIPS BE: sudo ./ connectionmanagerhostmips

 MIPS LE: sudo ./ connectionmanagerhostmipsel

Reference: SampleApps/Connection_Manager/readme.txt

5.5.3. SMS Sample Application

Location: SampleApps/Gobi_Image_Management/

Purpose: Send, read, and delete SMS messages

Build: i386: make

 ARM: make CPU=arm9

 Power PC: make CPU=ppc

 MIPS BE: make CPU=mips

 MIPS LE: make CPU=mipsel

Execute:

 i386: sudo ./SMSSampleAppi386

 ARM: sudo ./SMSSampleApparm9

 PPC: sudo ./SMSSampleAppppc

 MIPS BE: sudo ./SMSSampleAppmips

 MIPS LE: sudo ./SMSSampleAppmipsel

Reference: SampleApps/SMSSampleApp/readme.txt

5.5.4. SLQS Tutorial Sample Application

Location: SampleApps/SLQS_Tutorial/

Purpose: Familiarize Application Developers with the SDK and provide a starting point for writing
an application.

Build: i386: make

ARM: make CPU=arm9

Power PC: make CPU=ppc

MIPS BE: make CPU=mips

MIPS LE: make CPU=mipsel

Execute: i386: sudo ./slqstutoriali386

4110914 Rev 1.2 Apr 19, 201 35

Application Developer's Guide

 ARM: sudo ./slqstutorialarm9

 PPC: sudo ./slqstutorialppc

 MIPS BE: sudo ./slqstutorialmips

 MIPS LE: sudo ./slqstutorialmipsel

5.5.4.1. Using the SLQS Tutorial

Open two terminals, one for running the application, the other for viewing the message log.

In the message log terminal execute tailf /var/log/syslog | grep slqstuotrial.

In the application terminal execute sudo ./slqstutorial.

Two example sessions are shown below with interleaved explanations. Messages in green were
echoed to /var/log/syslog from a third terminal to explain what is being done.

5.5.4.1.1. Execution with Root Privileges

slqstutorial: Run the Application (sudo ./slqstutorial)

slqstutorial: cigetnumappclients: count: 1

slqstutorial: wSLQSStart: APP<->SDK IPC init successful

slqstutorial: wSLQSStart: APP registered for Device State Change notification

The application has set the SDK image path, registered for the device state change

callback, and started the SDK i.e. called SLQSStart which creates the SDK process

and local IPC sockets.

slqstutorial: Physically Remove the Device

slqstutorial: Device State Change Callback Invoked: rc = 0x0,

slqstutorial: appstatechange: device disconnected, APP disconnected from SDK

slqstutorial: appstatechange: device ready, APP disconnected from SDK

slqstutorial: appstatechange: device ready, APP connected to SDK

The two messages above illustrate that the application will continue to receive

device state change notifications even after calling the QCWWANDisconnect API.

slqstutorial: Attempt to Enumerate the device while it is absent (Option 1)

slqstutorial: wQCWWANEnumerateDevices: rc = 0x6, eQCWWAN_ERR_NO_DEVICE

slqstutorial: #devices: 1 deviceNode: deviceKey:

slqstutorial: wQCWWANConnect: rc = 0x6, eQCWWAN_ERR_NO_DEVICE

Device enumeration has failed as the SDK did not detect a device

slqstutorial: Physically plug in the device

slqstutorial: Device State Change Callback Invoked: rc = 0x1,

slqstutorial: appstatechange: device ready, APP disconnected from SDK

The application is notified of the device state change

slqstutorial: Attempt to Enumerate the device (Option 1)

slqstutorial: Enumerate, Connect, Connect/Disconnect device

slqstutorial: wQCWWANEnumerateDevices: rc = 0x0,

slqstutorial: #devices: 1 deviceNode: /dev/qcqmi0 deviceKey: 00000000000000

slqstutorial: appstatechange: device ready, APP disconnected from SDK

4110914 Rev 1.2 Apr 19, 201 36

Application Developer's Guide

Device enumeration is successful but note that the application is still not bound

to the SDK (APP disconnected from SDK.

slqstutorial: Attempt to Connect to the enumerated device (Option 2)

slqstutorial: wQCWWANConnect: rc – 0x0

slqstutorial: appstatechange: device ready, APP connected to SDK

The application is now bound to the SDK (APP connected to SDK)and may therefore

issue any API function hereon.

slqstutorial: Physically remove the device while the application is bound to the

SDK

slqstutorial: Device State Change Callback Invoked: rc = 0x0,

slqstutorial: appstatechange: device disconnected, APP connected to SDK

The application is notified of the device state change

slqstutorial: Plug in the device while the application is still bound to the SDK

slqstutorial: Device State Change Callback Invoked: rc = 0x1,

slqstutorial: appstatechange: device ready, APP connected to SDK

The application is notified of the device state change

slqstutorial: Execute some APIs to confirm that the application is still bound to

the SDK

slqstutorial: wGetSessionState: rc = 0x0, (Option 5)

slqstutorial: wStartDataSession: rc = 0x0, (Option 6)

slqstutorial: wStopDataSession: rc = 0x0, (Option 7)

Successful execution of APIs as indicated by a return code of 0x0

slqstutorial: Kill the SDK Process (option 10)

slqstutorial: wSLQSKillSDKProcess: rx = 0x0,

SDK process has been terminated (issue ps –eT | grep slqs to confirm the process is

no longer running)

slqstutorial: Restart the SDK process (option 0)

slqstutorial: Device State Change Callback Invoked: rc = 0x1,

slqstutorial: appstatechange: device ready, APP diconnected from SDK

The application has set the SDK image path, registered for the device state change

callback, and started the SDK i.e. called SLQSStart which creates the SDK process

and local IPC sockets.

slqstutorial: Exit the application (option 11)

slqstutorial: cleanup: Good bye! (0x0)

5.5.4.1.2. Execution without Root Privileges

Note that there must not be an SDK daemon running with root priveleges or you will

not see the same behaviour as described for below. Issue sudo killall slqssdk to

make sure this is the case.

slqstutorial: Run the application w/o root priveleges

slqstutorial: cigetnumappclients: count: 1

slqstutorial: wSLQSStart: APP<->SDK IPC init successful

slqstutorial: wSLQSStart: APP registered for Device State Change notification

slqstutorial: wSLQSStart: APP<->SDK IPC init successful

slqstutorial: wSLQSStart: APP registered for Device State Change notification

4110914 Rev 1.2 Apr 19, 201 37

Application Developer's Guide

The application has set the SDK image path, registered for the device state change

callback, and started the SDK i.e. called SLQSStart which creates the SDK process

and local IPC sockets.

slqstutorial: Attempt to Enumerate the device (Option 1)

slqstutorial: wQCWWANEnumerateDevices: rc = 0xE901, eQCWWAN_ERR_SWIDCS_IOCTL_ERR

Notice that an error is returned because anyone trying to access the /dev/qcqmix

device special file must have root priveleges.

slqstutorial: #devices: 1 deviceNode: deviceKey:

Since the IOCTL issued by the SDK to the driver fails, the device key is not

returned and the returned values are blank.

slqstutorial: Attempt to Connect to the non-enumerated device (Option 2)

slqstutorial: wQCWWANConnect: rc = 0x6, eQCWWAN_ERR_NO_DEVICE

No device has been enumerated as indicated by the error above

slqstutorial: Attempt to execute other APIs

slqstutorial: wQCWWANGetConnectedDevice: rc = 0x6, eQCWWAN_ERR_NO_DEVICE

(Option 4)

slqstutorial: wGetSessionState: rc = 0xE903, eQCWWAN_ERR_SWIDCS_APP_DISCONNECTED

(Option 5)

slqstutorial: wStartDataSession: rc = 0xE903, eQCWWAN_ERR_SWIDCS_APP_DISCONNECTED

(Option 6)

slqstutorial: wStopDataSession: rc = 0xE903, eQCWWAN_ERR_SWIDCS_APP_DISCONNECTED

(Option 7)

The application is not bound to the SDK and errors are received as shown above

5.5.5. Connection Manager Sample Application

Location: SampleApps/Connection_Manager/

Purpose: Create, delete, view, and modify profiles. Start/stop data sessions.

Build: i386: make

 ARM: make CPU=arm9

 Power PC: make CPU=ppc

 MIPS BE: make CPU=mips

 MIPS LE: make CPU=mipsel

Execute:

 i386: sudo ./connectionmgri386

 ARM: sudo ./connectionmgrarm9

 PPC: sudo ./connectionmgrppc

 MIPS: sudo ./connectionmgrmips

 MIPS BE: sudo ./connectionmgrmipsel

4110914 Rev 1.2 Apr 19, 201 38

Application Developer's Guide

5.5.6. Position Determination Service Sample
Application

Location: SampleApps/PDS_Service/

Purpose: Set and Get GPS Service State. Start/stop tracking session.

Build: i386: make

 ARM: make CPU=arm9

 Power PC: make CPU=ppc

 MIPS BE: make CPU=mips

 MIPS LE: make CPU=mipsel

Execute:

 i386: sudo ./pdsservicehosti386

 ARM: sudo ./pdsservicearm9

 PPC: sudo ./pdsserviceppc

 MIPS: sudo ./pdsservicemips

 MIPS BE: sudo ./pdsservicemipsel

5.5.7. SWIOMA Sample Application

Location: SampleApps/SWIOMA_Application/

Purpose: Set and Get SWIOMADM setting. Start/cancel SWIOMADM session.

Build: i386: make

 ARM: make CPU=arm9

 Power PC: make CPU=ppc

 MIPS BE: make CPU=mips

 MIPS LE: make CPU=mipsel

Execute:

 i386: sudo ./SWIOMASampleApphosti386

 ARM: sudo ./SWIOMASampleApparm9

 PPC: sudo ./SWIOMASampleAppppc

 MIPS: sudo ./SWIOMASampleAppmips

 MIPS BE: sudo ./SWIOMASampleAppmipsel

4110914 Rev 1.2 Apr 19, 201 39

5.6. AirVantage Agent Integration

The AirVantage agent was fully integrated to SLQS starting from version 3.2. It is a default service
running in the background when SLQS starts. Users don’t need to explicitly start the service.

To disable the service, the user needs to properly setup SLQS through a configuration file. SLQS will
not start if AirVantage service is missing or not properly setup.

5.6.1. Auto Start Preprocessor

AGENT_AUTO_START is by default disabled at pkgs/slqscompile.mak. To enable, uncomment
command line: CFLAGS += -DAGENT_AUTO_START.

5.6.2. Agent Configuration File

Location: Same directory of slqssdk

Name: .sdk_config

Syntax: AVA_PATH=absolute path of runtime folder of agent

 e.g. AVA_PATH=/home/ SDK/AirVantageAgent/build.arm/runtime

 To disable the agent, set AVA_PATH=NO_AVA (only first line of config file will be

 read)

If the configuration file is missing, SLQS will try to search for “AirVantageAgent/runtime” in the
slqssdk folder. If it is still not found, SDK will not start.

5.6.3. Agent Constrains

SLQS supports a maximum of three simultaneous applications and AirVantage service uses two of
them. Only one extra application is supported when AirVantage is started.

5.6.4. Agent Source Tree

Location: SampleApps/AirVantageAgent/avagent_r8m

Build: i386: build_avagent.sh

 arm: build_avagent.sh arm

Output: i386: build.default

 arm: build.arm

5.6.5. Start/Stop the AirVantage Agent

To start, run “start_sdk_hosti686.sh” or start any sample application.

To stop, run “stop_sdk_hosti686.sh”.

4110914 Rev 1.2 Apr 19, 201 40

Application Developer's Guide

5.6.6. AirVantage M2M Cloud

Address: http://eu.airvantage.net/

Usage: Please refer to document Error! Reference source not found. Error! Reference so
urce not found..

5.7. Full APIs Debug Information

When SDK is compiled with DEBUG_IPC_MSG_FLAG defined. Additional logs will be captured in
syslogs. These logs will print useful information like if a REQ/RESP/NOTIF is sent/received and also
prints svc and msg id for that transaction at following points of code flow.

1. When request sent from API process to SDK process

Eg:[swi_osapiipcwrite] REQ svc 3 msgid 0x2

2. When request received by SDK process

Eg:[amipcrcvhandler] REQ svc 3 msgid 0x2

3. When response sent from SDK process to API process

Eg:[swi_ossdkipcwrite] RESP svc 3 msgid 0x2

4. When response received by API process

Eg:[amsendnwait] RESP svc 3 msgid 0x2

5. When notification sent from SDK process to API process

Eg:[amapiwaitnotif] NOTIF svc 3 msgid 0x2

6. When notification received by API process

Eg:[swi_osapiipcread] NOTIF svc 3 msgid 0x2

7. A log when a mutex is obtained and released by the API process

Eg:[amgetreqbufp] Mutex Locked

[amrelreqbufp] Mutex Unlocked

8. A log with the timeout value for a particular API

Eg:[SwiQmiMISendnWait]Timeout 2000 secondsFor Example:

Sep 8 13:49:29 infy-desktop qatesthostx86_64: SetSignalStrengthCallback - START

Sep 8 13:49:29 infy-desktop qatesthostx86_64: [amgetreqbufp] Mutex Locked

Sep 8 13:49:29 infy-desktop qatesthostx86_64: [SwiQmiMISendnWait]Timeout 2000 seconds

Sep 8 13:49:29 infy-desktop qatesthostx86_64: [swi_osapiipcwrite] REQ svc 3 msgid 0x2

Sep 8 13:49:29 infy-desktop qatesthostx86_64: [swi_osapiipcread] NOTIF svc 0 msgid 0x0

Sep 8 13:49:29 infy-desktop SWI0 SDK Process: [amipcrcvhandler] REQ svc 3 msgid 0x2

Sep 8 13:49:29 infy-desktop SWI0 SDK Process: [swi_ossdkipcread] NOTIF svc 0 msgid 0x0

Sep 8 13:49:29 infy-desktop SWI0 SDK Process: QM:qmqmireq/1390: Request: QMI Instance 0

Sep 8 13:49:29 infy-desktop SWI0 SDK Process: QM:SDK->Mdm: request received :
ipcch/svctype/xactionlen/clientnum: 0/0003/14/2

Sep 8 13:49:29 infy-desktop SWI0 SDK Process: QM:SDK->Mdm: request validated :
ipcch/svctype/xactionlen/clientnum: 0/0003/14/2

Sep 8 13:49:29 infy-desktop SWI0 SDK Process: QM:Launching QMI DS shell: service 3(NAS)

http://eu.airvantage.net/

4110914 Rev 1.2 Apr 19, 201 41

Application Developer's Guide

Sep 8 13:49:29 infy-desktop SWI0 SDK Process: QM:qmqmireq/1501: WDS Request: Active Client
2, WDS Client 0

Sep 8 13:49:29 infy-desktop SWI0 SDK Process: UDIAG:DS Shell launched

Sep 8 13:49:29 infy-desktop SWI0 SDK Process: QMURR1:Endpoint DS shell instance created

Sep 8 13:49:29 infy-desktop SWI0 SDK Process: USB read: bytes2read = 14, read 14 bytes

Sep 8 13:49:29 infy-desktop SWI0 SDK Process: QM:SDK<-Mdm Resp:
ch/Msgid/Msglen/IPCmsglen: 0/0002/11/29

Sep 8 13:49:29 infy-desktop SWI0 SDK Process: [swi_ossdkipcwrite] RESP svc 3 msgid 0x2

Sep 8 13:49:29 infy-desktop qatesthostx86_64: [amsendnwait] RESP svc 3 msgid 0x2

Sep 8 13:49:29 infy-desktop qatesthostx86_64: [amrelreqbufp] Mutex Unlocked

Sep 8 13:49:29 infy-desktop qatesthostx86_64: SetSignalStrengthCallback - END

Sep 8 13:52:00 infy-desktop SWI0 SDK Process: USB read: bytes2read = 12, read 12 bytes

Sep 8 13:52:00 infy-desktop SWI0 SDK Process: QM:SDK<-Mdm Notif:
ch/Msgid/Msglen/IPCmsglen: 1/0002/9/27

Sep 8 13:52:00 infy-desktop SWI0 SDK Process: [swi_ossdkipcwrite] NOTIF svc 3 msgid 0x2

Sep 8 13:52:00 infy-desktop SWI0 SDK Process: QM:SDK<-Mdm Notif:
ch/Msgid/Msglen/IPCmsglen: 3/0002/9/27

Sep 8 13:52:00 infy-desktop kernel: [869620.269915] GobiNet::UpSem 0x0103

Sep 8 13:52:00 infy-desktop kernel: [869620.270156] GobiNet::FindClientMem Found client's 0x103
memory

Sep 8 13:52:00 infy-desktop SWI0 SDK Process: QM:SDK<-Mdm Notif:
ch/Msgid/Msglen/IPCmsglen: 5/0002/9/27

Sep 8 13:52:00 infy-desktop qatesthostx86_64: [amapiwaitnotif] NOTIF svc 3 msgid 0x2

Sep 8 13:52:00 infy-desktop qatesthostx86_64: [swi_osapiipcread] NOTIF svc 3 msgid 0x2

Sep 8 13:52:03 infy-desktop SWI0 SDK Process: QM:SDK<-Mdm Notif:
ch/Msgid/Msglen/IPCmsglen: 1/0002/9/27

Sep 8 13:52:03 infy-desktop SWI0 SDK Process: [swi_ossdkipcwrite] NOTIF svc 3 msgid 0x2

Sep 8 13:52:03 infy-desktop SWI0 SDK Process: QM:SDK<-Mdm Notif:
ch/Msgid/Msglen/IPCmsglen: 3/0002/9/27

Sep 8 13:52:03 infy-desktop SWI0 SDK Process: QM:SDK<-Mdm Notif:
ch/Msgid/Msglen/IPCmsglen: 5/0002/9/27

Sep 8 13:52:03 infy-desktop qatesthostx86_64: [amapiwaitnotif] NOTIF svc 3 msgid 0x2

Sep 8 13:52:03 infy-desktop qatesthostx86_64: [swi_osapiipcread] NOTIF svc 3 msgid 0x2

Sep 8 13:52:04 infy-desktop SWI0 SDK Process: USB read: bytes2read = 45, read 45 bytes

Sep 8 13:52:04 infy-desktop SWI0 SDK Process: QM:SDK<-Mdm Notif:
ch/Msgid/Msglen/IPCmsglen: 1/0024/42/60

Sep 8 13:52:04 infy-desktop SWI0 SDK Process: [swi_ossdkipcwrite] NOTIF svc 3 msgid 0x36

Sep 8 13:52:04 infy-desktop SWI0 SDK Process: QM:SDK<-Mdm Notif:
ch/Msgid/Msglen/IPCmsglen: 3/0024/42/60

Sep 8 13:52:04 infy-desktop SWI0 SDK Process: QM:SDK<-Mdm Notif:
ch/Msgid/Msglen/IPCmsglen: 5/0024/42/60

Sep 8 13:52:04 infy-desktop qatesthostx86_64: [amapiwaitnotif] NOTIF svc 3 msgid 0x36

Sep 8 13:52:04 infy-desktop qatesthostx86_64: [swi_osapiipcread] NOTIF svc 3 msgid 0x36

Sep 8 13:52:04 infy-desktop SWI0 SDK Process: USB read: bytes2read = 45, read 45 bytes

4110914 Rev 1.2 Apr 19, 201 42

Application Developer's Guide

Sep 8 13:52:04 infy-desktop SWI0 SDK Process: QM:SDK<-Mdm Notif:
ch/Msgid/Msglen/IPCmsglen: 1/0024/42/60

Sep 8 13:52:04 infy-desktop SWI0 SDK Process: [swi_ossdkipcwrite] NOTIF svc 3 msgid 0x36

Sep 8 13:52:04 infy-desktop SWI0 SDK Process: QM:SDK<-Mdm Notif:
ch/Msgid/Msglen/IPCmsglen: 3/0024/42/60

Sep 8 13:52:04 infy-desktop SWI0 SDK Process: QM:SDK<-Mdm Notif:
ch/Msgid/Msglen/IPCmsglen: 5/0024/42/60

Sep 8 13:52:04 infy-desktop qatesthostx86_64: [amapiwaitnotif] NOTIF svc 3 msgid 0x36

Sep 8 13:52:04 infy-desktop qatesthostx86_64: [swi_osapiipcread] NOTIF svc 3 msgid 0x36

Sep 8 13:52:04 infy-desktop SWI0 SDK Process: USB read: bytes2read = 45, read 45 bytes

Sep 8 13:52:04 infy-desktop SWI0 SDK Process: QM:SDK<-Mdm Notif:
ch/Msgid/Msglen/IPCmsglen: 1/0024/42/60

Sep 8 13:52:04 infy-desktop SWI0 SDK Process: [swi_ossdkipcwrite] NOTIF svc 3 msgid 0x36

Sep 8 13:52:04 infy-desktop SWI0 SDK Process: QM:SDK<-Mdm Notif:
ch/Msgid/Msglen/IPCmsglen: 3/0024/42/60

Sep 8 13:52:04 infy-desktop SWI0 SDK Process: QM:SDK<-Mdm Notif:
ch/Msgid/Msglen/IPCmsglen: 5/0024/42/60

Sep 8 13:52:04 infy-desktop qatesthostx86_64: [amapiwaitnotif] NOTIF svc 3 msgid 0x36

Sep 8 13:52:04 infy-desktop qatesthostx86_64: [swi_osapiipcread] NOTIF svc 3 msgid 0x36

Sep 8 13:52:07 infy-desktop SWI0 SDK Process: USB read: bytes2read = 28, read 28 bytes

Sep 8 13:52:07 infy-desktop SWI0 SDK Process: QM:SDK<-Mdm Notif:
ch/Msgid/Msglen/IPCmsglen: 1/0024/25/43

Sep 8 13:52:07 infy-desktop SWI0 SDK Process: [swi_ossdkipcwrite] NOTIF svc 3 msgid 0x36

Sep 8 13:52:07 infy-desktop SWI0 SDK Process: QM:SDK<-Mdm Notif:
ch/Msgid/Msglen/IPCmsglen: 3/0024/25/43

Sep 8 13:52:07 infy-desktop SWI0 SDK Process: QM:SDK<-Mdm Notif:
ch/Msgid/Msglen/IPCmsglen: 5/0024/25/43

Sep 8 13:52:07 infy-desktop qatesthostx86_64: [amapiwaitnotif] NOTIF svc 3 msgid 0x36

Sep 8 13:52:07 infy-desktop qatesthostx86_64: [swi_osapiipcread] NOTIF svc 3 msgid 0x36

4110914 Rev 1.2 Apr 19, 201 43

6. Lite APIs Getting Started

With revision 4.0.0, we introduce a set of Lite APIs which to encode or decode QMI messages.

6.1. Using Lite SDK wrapper to encode/decode
QMI messages

These Lightweight API allows developer to pack/unpack QMI messages directly. Developers have to
handle the QMI device (/dev/qcqmi#) read/write. The packing demo is an utility that exercise most of
these lightweight APIs. Later section show a how to implement an application to retrieve model id
from modem

6.2. Steps to run packing demo sample app

mkdir 400

cd 400

tar xf ../SLQS04.00.10/SLQS04.00.00.tar.gz

make -C SampleApps/packingdemo

./SampleApps/packingdemo/bin/packingdemohostx86_64

4110914 Rev 1.2 Apr 19, 201 44

Application Developer's Guide Lite APIs Getting Started

6.3. Application to retrieve modem’s model id

#include <fcntl.h>

#include <unistd.h>

#include <stdio.h>

#include "dms.h"

#define QMI_GET_SERVICE_FILE_IOCTL 0x8BE0 + 1

int

main()

{

 pack_qmi_t context;

 uint8_t request[255], response[255];

 uint16_t req_len, resp_len;

 unpack_dms_GetModelID_t model_t;

 int qmi_fd = open("/dev/qcqmi0", O_RDWR);

 //register DMS QMI client via ioctl

 ioctl(qmi_fd, QMI_GET_SERVICE_FILE_IOCTL, eDMS);

 //encode qmi request

 context.xid = 0xabcd; // xid must be non-zero

 pack_dms_GetModelID(&context, request, &req_len, NULL);

 write(qmi_fd, request, req_len);

 read(qmi_fd, response, 255);

 //decode qmi response

 unpack_dms_GetModelID(response, resp_len, &model_t);

 printf("model id: %s\n", model_t.modelid);

 close(qmi_fd);

}

4110914 Rev 1.2 Apr 19, 201 45

Application Developer's Guide Lite APIs Getting Started

The source above:

• Register Device Management Service (DMS) QMI client

• Encode Get Model ID QMI request

• Write request to Modem

• Decode Get MOdel ID QMI response

• Print Model Id to stdout

6.4. Compile and Run

cc get-model-id.c -I libpack/inc -lpack -Llibpack/lib/hostx86_64 -lpthread

-o get-model-id

./get-model-id

model id: EM7455

6.5. Wrapper headers and libraries

➜ 400 tree libpack

libpack

├── inc

│ ├── common.h

│ ├── dms.h

│ ├── fms.h

│ ├── loc.h

│ ├── msgid.h

│ ├── nas.h

│ ├── qmerrno.h

│ ├── qos.h

│ ├── sms.h

│ ├── swiloc.h

│ ├── swioma.h

│ ├── uim.h

│ └── wds.h

└── lib

 ├── arm

 │ └── libpack.a

4110914 Rev 1.2 Apr 19, 201 46

Application Developer's Guide Tools

 ├── hosti686

 │ └── libpack.a

 ├── hostx86_64

 │ └── libpack.a

 └── ppc

 └── libpack.a

6 directories, 17 files

7. Tools

7.1. DM Logging Tool

Location: /tools/logging/dm

Purpose: This tool can be used to send DM filters to the device and log raw DM packets for
 real-time analysis with QPST (remote logging option) or post-hoc analysis (local or
 remote logging).

Build: i386: make

 ARM: make CPU=arm9

 Power PC: make CPU=ppc

 MIPS BE: make CPU=mips

 MIPS LE: make CPU=mipsel

Usage: Navigate to tools/logging/dm and execute ./dmcapture.sh in a shell.

7.2. RAM Dump Tool

Location: /tools/logging/ramdump

Purpose: This tool supports the capturing of the device RAM contents when the device is in
 boot and hold mode. RAM contents are saved in files written to the current working
 directory.

Build: i386: make

 ARM: make CPU=arm9

 Power PC: make CPU=ppc

 MIPS BE: make CPU=mips

4110914 Rev 1.2 Apr 19, 201 47

Application Developer's Guide Tools

 MIPS LE: make CPU=mipsel

Usage:

Prior to Execution:

1. Enter the following AT commands:

at!entercnd="A710"

at!eroption=0

2. Either reproduce a crash you are investigating, or reset the device

Execution:

Within a shell, execute the following (for i386):

./ramdumptooli386 -c<digit>

Where /dev/ttyUSB<digit> = DM interface ttyUSB device file in boot and hold mode (usually
/dev/ttyUSB0).

Note: This tool works independent of the SDK.

4110914 Rev 1.2 Apr 19, 201 48

7.3. SQF Filter Editing

Location: /tools/logging/dm/filter/src

Purpose: This tool supports modifying SQF filter via api

Usage:

1. Include header file : sqf.h

2. Create Gobal variable : sqf_t sqf

3. Create buffer for sqf : sqf_createbuffer()

4. Load sqf file (optional) : sqf_load_file()

5. Edit Filter : sqf_set() / sqf_clear()

6. Save sqf file : sqf_save_file()

7. Free Buffer for sqf : sqf_destroybuffer().

Note: This tool works independent of the SDK.

8. Documentation

To view the Full APIs documentation:

1. Navigate to docs/SwiApiReference and open index.html.

2. Click on the modules tab.

3. Select the module of interest e.g. “Short Message Service (SMS)” module.

4. Select the header file e.g. “qaGobiApiSms.h”.

For Lite APIs, please refer to docs/lite

Note: An API function header’s “Device Supported” section contains a list of devices that have been
successfully tested against that API.

4110914 Rev 1.2 Apr 19, 201 49

Application Developer's Guide Reference Documents

9. Reference Documents

[1] SLQS Release Notes

[2] 80-VF459-1 Supplement to Streaming Download Protocol

[3] AirVantage Agent SLQS Integration Guide

Reference: 4115927

